
  

  

Abstract—As an advanced image argumentation approach, 
image generation technology offers a novel solution to the 
challenges of data scarcity and distribution imbalance in the 
medical field. However, the severe imbalance in the class 
distribution causes the networks to overfit to the head classes, 
while failing to adequately model the distribution of the tail class 
data during image generation, ultimately compromising the 
quality of the generated images. To solve this problem, we 
propose a Class Prototype-Driven Diffusion Model (CPDM) to 
improve class-conditional image synthesis on long-tailed chest 
X-ray images datasets. To fully extract the features of limited tail 
classes while avoiding overfitting to head classes, we introduce 
a Class Prototype Bank, which stores representative feature 
vectors of each class. Furthermore, by integrating cross-
attention mechanisms between image features and class-specific 
prototypes, CPDM effectively captures fine-grained class 
features, enhancing both the realism and diversity of the 
generated images. Experiments show that our CPDM achieves 
the lowest FID=31.600 and highest IS=2.842, highlighting the 
effectiveness of CPDM in mitigating class imbalance and data 
scarcity in chest X-ray imaging. In downstream experiments, the 
classifier achieves a 17.22% improvement on the mAUC for 14 
thoracic diseases when trained on a mixed dataset containing 
only 1% real images. 
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I. INTRODUCTION 

Recently, deep learning has made significant strides in 
various auxiliary diagnostic tasks in medical imaging [1][2], 
yet the development of robust models remains challenged by 
limited access to large, high-quality datasets. By generating 
synthetic samples, image generation models as an advanced 
data augmentation technique, offer a promising solution to 
address data scarcity in medical imaging, particularly in chest 
X-ray images. 

Specifically, Generative Adversarial Networks (GANs [3]) 
and Diffusion Models have shown great potential in images 
generation and reconstructing data distribution. However, 
GANs face inherent architectural challenges, including mode 
collapse and training instability [4], which hinder their ability 
to accurately model the complex nature of real data 

 
* Corresponding authors (guoyi@fudan.edu.cn, yywang@fudan.edu.cn) 

distributions, particularly for long-tailed class. 
Diffusion Models like the Denoising Diffusion 

Probabilistic Models [5] (DDPM) and Stable Diffusion (SD) 
[ 6 ] have garnered significant attention in natural images 
generation. These likelihood-based models have been proven 
to outperform GANs with regard to both the stability of the 
training process and the ability to capture a wide range of data 
distributions [ 7 ]. The emergence of the Classifier-Free 
Guidance [8] has endowed diffusion models with the ability 
to generate images conditioned on specific classes, greatly 
enhancing their potential for data augmentation and 
improving class distribution balance in certain datasets. Due 
to the prevalent long-tailed distribution characteristics of 
existing medical datasets, currently the performance of class-
conditional diffusion models is significantly constrained[9]. 
Overfitting to the head class data distribution and insufficient 
learning of the tail classes severely degrade the fidelity and 
diversity of generated images, resulting in a substantial 
reduction in the controllability of the generation process 
compared to natural image generation. 

In this paper, we propose a Class Prototype-Driven 
Diffusion Model (CPDM) to enhance the overall quality of 
generated images including those from tail classes, with the 
aim of addressing the challenges of dataset scarcity and class 
imbalance. To maximize the utilization of existing tail-class 
data, we construct a class prototype bank, where each 
prototype is linked to the image features of its corresponding 
class. This approach strengthens the coupling between class 
information and generated images during the synthesis 
process. By incorporating cross-attention mechanisms 
between image features and class-specific prototypes, CPDM 
effectively enhances class-conditional image synthesis, 
capturing fine-grained class-specific characteristics. This 
approach not only improves the fidelity and diversity of 
generated images but also ensures alignment with the true 
class distributions through a class-reconstruction loss. Our 
proposed model demonstrates promising results in both image 
generation quality and downstream classification tasks, 
offering a practical solution for data augmentation in the 
medical imaging domain.
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Figure 1.  The overview of CPDM: Part (a) shows the framework of LDM, part (b) illustrates the Denoising Block utilized in the LDM and part (c)  shows 
the structure of Q-Block

II. METHODOLOGY 

Fig. 1 is the overview of our proposed CPDM. (a) presents 
the fundamental framework of The Latent Diffusion Model 
(LDM) training and sampling. (b) elaborates on the noise 
prediction module designed in our CPDM model, with the key 
highlights being the construction of the Class Prototype Bank 
(CPB) and the incorporation of the Q-Block, which integrates 
image-category information. (c) provides a detailed depiction 
of the structure of the Q-Block. 

A. Latent Diffusion Models 
LDM transferring the diffusion process to a lower-

dimensional latent space by utilizing a pretrained autoencoder 
to capture latent features zt , as demonstrated in Stable 
Diffusion(SD) [7]. In the latent space Z , this approach 
operates in two phases: forward diffusion and reverse 
denoising demonstrated in the Fig. 1 (a). 

The forward process gradually introduces noise to a latent 
representation zt  over T timesteps, transforming the latent 
feature of a real image into pure Gaussian noise. This process 
is mathematically formulated as a Markov chain: 

𝑞𝑞( 𝒛𝒛𝑡𝑡 ∣∣ 𝒛𝒛𝑡𝑡−1 ) = 𝒩𝒩�𝒛𝒛𝑡𝑡;�1 − β𝑡𝑡𝒛𝒛𝑡𝑡−1, β𝑡𝑡𝑰𝑰� (1) 
 
where zt denotes the latent representation of noisy image at 
step t, and βt governs the variance of the added at each step. 

In the reverse diffusion process, the model initiates from 
pure Gaussian noise and progressively refines the signal 
through iterative noise prediction and subtraction at each 
timestep, leveraging the shared denoising block architecture， 
denoted as (2). This process ultimately yields a clean latent 
feature representation, which is subsequently decoded into 
high-quality output images. 

𝑝𝑝θ( 𝒛𝒛𝑡𝑡−1 ∣∣ 𝒛𝒛𝑡𝑡 ) = 𝒩𝒩(𝒛𝒛𝑡𝑡−1;μθ(𝒛𝒛𝑡𝑡 , 𝑡𝑡),σ𝑡𝑡2𝑰𝑰) (2) 

 
Classifier-Free Guidance(CFG)[8] is employed to 

enhance the controllability of the generation process. The 
objective of the training process is to minimize the 
discrepancy between the actual data distribution and the 
samples generated by the model through a denoising score 
matching loss: 

ℒdenoise = 𝐸𝐸𝑥𝑥0,𝑡𝑡,ϵ[||𝜖𝜖 − 𝜖𝜖θ(𝒛𝒛𝑡𝑡 , 𝑡𝑡, 𝒄𝒄)||2] (3) 
 
where 𝜖𝜖 is the actual noise added during the forward process 
and 𝜖𝜖θ(𝒛𝒛𝑡𝑡 , 𝑡𝑡, 𝒄𝒄) is the denoise block's prediction. 

Nonetheless, medical imaging such as chest X-ray images 
datasets presents unique challenges for conditional generation, 
including complex foreground-background relationships, 
heterogeneous manifestations of the same disease, and similar 
imaging characteristics across different pathologies. These 
complexities cannot be adequately addressed by label vectors 
alone and require more sophisticated guidance mechanisms. 

B. Class Prototype Bank  
To fully leverage the guidance of input class information 

for image generation, we aim to strengthen the alignment 
between class information and its corresponding typical 
image features over all categories. To achieve this, we 
introduce a Class Prototype Bank (CPB), a specialized 
module designed to enhance feature-class coupling. As 
demonstrated in the part (b) of Fig. 1, The core idea of CPB 
is to constructs a class-specific prototype bank in a high-
dimensional feature space, denotes as 𝑃𝑃𝑐𝑐 ∈ 𝑅𝑅𝐶𝐶×(2𝐿𝐿)×𝐷𝐷, here 𝐶𝐶 
represents the number of classes while 𝐿𝐿 denotes the number 
of latent image patches and 𝐷𝐷 corresponds to the embedding 
dimension of the latent features. Each class prototype serves 
as a representative feature vector, encapsulating the 
distinctive characteristics of images within that class. This 



  

design enables the retrieval and alignment of image features 
from the CPB:  

𝑃𝑃𝑦𝑦 = 𝑃𝑃𝑐𝑐[𝑦𝑦] (4) 

ensuring that generated images are closely aligned with 
their corresponding class information. For the training of the 
CPB, we compute the reconstruction loss by measuring the 
difference between the prototype-based reconstructed 
features and the original image features as follows: 

𝐿𝐿recon =
1
2

||𝑥𝑥� − 𝑥𝑥clean ||22 (5) 

where the 𝑥𝑥� represent the reconstruction feature based on the 
given class and 𝑥𝑥clean denotes the original latent 
representation of the image. 

 

C. Q-Block and Prototype-Image Cross-Attention 
Once the prototypes are retrieved, they guide the 

generation of class-specific images by modulating the image 
synthesis process using the extracted representative features. 
Additionally, specifically focusing on optimizing tail-class 
performance, we integrate a Q-block module in the mid-level 
layers of the U-ViT network. This integration facilitates more 
effective interaction between tail class information and 
corresponding image features, thereby improving the model's 
ability to generate class-consistent images particularly for 
categories with limited training samples. The Q-Block 
incorporates a Class Prototype-Image Cross-Attention 
Mechanism, as illustrated in Fig. 1(c), which establishes 
dynamic interactions between category-specific prototypes 
and visual features through the cross-attention paradigm 
defined in (6) and (7): 

𝐐𝐐𝐐𝐐𝐐𝐐𝐐𝐐𝐐𝐐:𝑄𝑄𝑋𝑋 = 𝑋𝑋�𝑊𝑊𝑄𝑄 ,𝐊𝐊𝐊𝐊𝐊𝐊:𝐾𝐾𝑌𝑌 = 𝑃𝑃𝑦𝑦𝑊𝑊𝐾𝐾 ,𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕:𝑉𝑉𝑦𝑦 = 𝑃𝑃𝑦𝑦𝑊𝑊𝑉𝑉(6) 

where the 𝑊𝑊𝑄𝑄 ,𝑊𝑊𝐾𝐾 ,𝑊𝑊𝑉𝑉 ∈ 𝑅𝑅𝐷𝐷×𝐷𝐷 represent the learnable query, 
key and value matrix respectively. 𝑋𝑋 ∈ 𝑅𝑅𝐵𝐵×𝐿𝐿×𝐷𝐷 represents the 
latent features of the input image and 𝑋𝑋� = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑋𝑋), 
𝐵𝐵 is the batch size. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑄𝑄𝑋𝑋 ,𝐾𝐾𝑌𝑌 ,𝑉𝑉𝑦𝑦� = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑄𝑄𝑋𝑋𝐾𝐾𝑌𝑌𝑇𝑇

√𝐷𝐷
�𝑉𝑉𝑦𝑦 (7) 

Building upon the “question-answer” relationship 
between class prototypes and image features, the Q-block 
employs cross-attention to dynamically focus on features 
most relevant to the target class. This mechanism facilitates 
class-conditioned image generation by emphasizing local tail-
class characteristics, thereby producing high-fidelity and 
diverse images with enhanced representation of 
underrepresented categories. Following the cross-attention, 
the MLP layer processes the features further, enhancing non-
linear representations. At the same time, we introduce zero-
initialized initial layers to avoid interference from the 
uncertain initial state of the CPB. 

III. EXPERIMENTAL SETUP 

A. Datasets and Preprocessing 
ChestX-ray14 [10] comprises 112,120 frontal-view X-ray 

images from 30,805 patients, annotated with 14 disease labels. 
Following the official data split, we use 75,312 images for 

training and 25,596 images for testing. To better align with 
our experimental objectives in the long-tailed distribution of 
single-label dataset, we apply label filtering to retain only 
single-label samples, resulting in a refined dataset of 64,352 
training images and 9,119 test images. The distribution of 
images across each category in the training set is detailed in 
Fig. 2, which clearly illustrates the feature of long-tailed 
distribution. For computational efficiency, all images are 
resized from their original resolution of 1024×1024 to 
256×256. 

B. Implement Detail 
For the hyperparameter of our model, the latent dimension 

of images is (4, 32, 32), with a batch size of 512 and an 
embedding dimension of 1024 and the classifier-free 
guidance parameter 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is set to 0.15. We use the AdamW 
optimizer with the Learning rate of 1e-5 and the weight decay 
of 0.03. All components of the proposed model are 
implemented with PyTorch and trained on 2 Nvidia A100 
80GB GPUs. 

 
Figure 2.  Category Distribution in ChestX-ray14 (Preprocessed) 

C. Experiment Detail 
In our comparative experiments, we evaluate our model 

against several state-of-the-art (SOTA) models in the class-
conditional image generation domain, including both GANs 
and Diffusion Models. To assess image fidelity and diversity, 
we employ four widely-used evaluation metrics: Fréchet 
Inception Distance (FID), Inception Score (IS), Precision, 
and Recall. To rigorously assess our model's capability in 
generating underrepresented (tail-class) samples, we conduct 
additional evaluations on tail class data, focusing on four tail 
categories including Fibrosis(0.74%), Edema(0.55%), 
Pneumonia(0.31%) and Hernia(0.05%). 

To further demonstrate the practical relevance and value 
of the generated images, we conduct downstream task 
experiments by mixing the generated data with varying 
proportions of the original dataset (1%, 10%, and 100%) to 
create hybrid training sets. These hybrid datasets are utilized 
to train deep learning classifiers for multi-label thoracic 
disease classification tasks, and their performance is 
evaluated on the original test set. To ensure the robustness of 
our experiments, we employ two widely-used image 
classifiers: DenseNet-121 pretrained on ImageNet following 
the chestXclusion [11] and ConvNext [12]. We quantify the 
classification performance using the mean Area Under the 
Curve (mAUC) metric, which provides a comprehensive 
evaluation of the classifiers' effectiveness. 



IV. RESULT

A. Comparison with the State-of-the-Art Method
In the comparative experiments, our model achieves

significantly superior performance in the image synthesis task 
compared to state-of-the-art (SOTA) models. The quantitative 
superiority of our model in image generation quality is 
substantiated by its benchmark performance: the lowest FID 
score (31.600) confirms enhanced fidelity to real image 
distributions, while the highest IS (2.84) and Precision (0.523) 
metrics validate improved diversity and semantic alignment 
of synthesized outputs, as documented in Tab. I. For tail 
classes, our model demonstrates remarkable performance 
gains achieving 10.45 reduction in FID with 0.8 
improvement in IS, 0.178 increase in Precision and 0.643 
enhancement in Recall. These comprehensive advancements 
quantitatively validate the model's dual capability in 
maintaining global distribution fidelity through the 
construction of CPB and capturing tail-class-specific features 
via adaptive Prototype-Image Cross-Attention mechanisms.  

TABLE I. THE PERFORMANCE COMPARISON ON CHESTX-RAY14 
DATASET.  

Approach FID↓ IS↑ Precision↑ Recall↑ 

StyleGAN3[13] 36.221 2.296 0.343 0.418 
CBDM[14] 52.139 2.419 0.276 0.416 

LDM[6] 47.730 2.592 0.343 0.450 
DiT[15] 50.016 2.560 0.282 0.459 

U-ViT[16] 56.204 2.723 0.295 0.455 
CPDM 27.333 2.842 0.523 0.433 

CPDM (tail) 44.027 2.989 0.717 0.701 
StyleGAN3(tail) 54.442 2.189 0.539 0.058 

B. Downstream task and Visualization
To further validate the effectiveness of our approach, we

conducted comprehensive downstream application 
experiments coupled with interpretability visualization 
analyses on the generated data, as demonstrated in Tab. II, Fig. 
3 and Fig. 4. 

Tab. II presents the performance of the classifiers on 
mixed datasets with varying ratio of the original dataset in the 
downstream experiments. Horizontally, for both classifiers, 
the mAUC of the mixed datasets shows improvements 
compared to datasets without generated data. Notably, when 
the original dataset consists of 1% and 10% real data, the 
mAUC increases by 15.9% and 10.2%, respectively, for 
DenseNet-121. Vertically, when comparing the generated 
data from our model with that of the current SOTA model in 
class-conditional generation, we observe that mixed datasets 
using data generated by our CPDM model consistently yield 
better classification performance for both classifiers. 
Furthermore, as shown in the Fig. 3, when training classifiers 
on datasets combining real data (ratio=100%) with synthetic 
samples, we observe a notable performance disparity that 
while the overall mAUC shows a modest 2% enhancement, 
tail classes exhibit a more pronounced 5% gain. Specifically, 
classifiers trained on the ChestX-ray14+CPDM hybrid dataset 
outperform those using data generated by the SOTA model for 
tail class recognition, achieving a 0.03 higher mAUC. This 
differential improvement underscores our method's capability 

to leverage the Q-Block and cross-attention mechanisms in 
effectively utilizing category-prototypical features preserved 
in the CPB, enabling more accurate modeling of tail class 
distributions and generating images that better approximate 
the original data distribution.  
TABLE II. ENHANCING CLASSIFIER PERFORMANCE WITH GENERATED 

DATA. 

Classifier Data 
Ratio of Real Images 

1% 10% 100% 

DensNet-121 

ChestX-ray14 0.5343 0.6737 0.7969 
ChestX-ray14 
+ styleGAN 0.6625 0.6841 0.8069 

ChestX-ray14 
+ CPDM 0.6933 0.7757 0.8250 

ConvNext 

ChestX-ray14 0.5321 0.7157 0.8176 
ChestX-ray14 
+ styleGAN 0.6534 0.7841 0.8237 

ChestXray14 
+ CPDM 0.7043 0.8176 0.8252 

As evidenced by the ablation studies in Table III: The 
proposed CPB module achieves a 26.33 reduction in FID 
while maintaining the original IS. Subsequent integration of 
the Q-block to enhance feature interaction between prototypes 
and latent representations yielded further gains of -28.87 in 
FID and +0.12 in IS. These results demonstrate the 
effectiveness of our proposed CPB and Q-block modules in 
enhancing category-specific image generation quality. 

TABLE III. THE ABLATION EXPERIMENTS RESULTS OF CPDM  

Approach FID↓ IS↑ 

CPDM  
(w/o) CPB, Q-Block 56.20 2.72 

(w/ ) CPB 29.87(-26.33) 2.70 

(w/ ) CPB, Q-Block 27.33 (-28.87) 2.84(+0.12) 

In Fig. 4, we present visual examples from three 
categories including the head, middle and tail class comparing 
generated images from the original data, the current SOTA 
model and our CPDM. The experimental results demonstrate 
that our method achieves superior image quality with 
enhanced texture resolution and more accurate lesion 
representation compared to SOTA approaches. Specifically, 
for head and medium-frequency classes, our method 
maintains comparable lesion feature representation while 
significantly improving fidelity and texture clarity. More 
importantly, for tail classes such as Hernia (0.05% occurrence) 
as shown in the lower-right panel of Fig. 4, our approach not 
only preserves excellent fidelity and diversity but also 
outperforms existing methods in capturing rare disease 
characteristics. This breakthrough is primarily attributed to 
our CPB, which effectively retains the distinctive features of 
tail-class data and provides clearer guidance for tail-class 
image generation. This confirms that our model not only 
achieves high fidelity and diversity but also provides a more 
refined and precise representation of rare and challenging 
categories in the dataset. 



Figure 3.  Performance Comparison on Thoracic Disease Classification: 
mAUC for Four Tail Classes Using 100% Real Image Data 

(H), (M) and (T) refer to the head, middle and the tail classes respectively   

Figure 4.  Visualization Comparison of Synthesized Images 

V. CONCLUSION

In this paper, we present a medical image generation 
framework CPDM that explores potential solutions to data 
scarcity and class imbalance challenges through two novel 
components: a Class Prototype Bank for feature preservation 
and a Q-block module enabling cross-modal interaction 
between class semantics and visual patterns. Experimental 
validation indicates improved performance generation 
especially the tail class compared to existing approaches, with 
downstream task analyses suggesting that synthesized images 
may provide meaningful augmentation for classifier training 
under data-limited scenarios. These results contribute to 
ongoing efforts in addressing long-tailed distribution 
problems in Chest X-ray imaging, while highlighting 

directions for future work in medical conditional generative 
augmentation.  
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